
Deny-everything-by-default-policy
IP Packet

Accept-everything-by-default-policy
IP Packet

iptables syntax

iptables -I INPUT -i eth0 -p tcp -s
192.168.56.1 --sport 1024:65535 -d
192.168.56.2 --dport 22 -j ACCEPT

iptables -I OUTPUT -o eth1 -p tcp !
 --syn -s 192.168.56.2 --sport 22 -d
192.168.56.1 --dport 1024:65535 -j
ACCEPT

Packet Filter Layers

Data Link

Network

Transport

Session

Presentation

Application

Other Smoke
Signals

CDMA FDDI Ethernet

IP

UDP TCP

... RealPlayer HTTP SMTP FTP

Command
●  The compulsory command section of the command

above is the most important part of the iptables
command.

●  It tells the iptables command what to do, for example, to
insert a rule, to add a rule to the end of the chain, or to
delete a rule.

Command
●  The following are the most often-used commands:

–  -A or --append: This command appends a rule to the end of a
chain. Example:

–  $ iptables -A INPUT -s 205.168.0.1 -j
ACCEPT

–  This example command appends a rule at the end of the
INPUT chain that specifies packets coming from source
address 205.168.0.1 to be ACCEPT

Commands
●  -D or --delete: This command deletes a rule from the

chain, either by specifying the rule to match with -D or
by specifying the rule's position number in the chain.
The following examples shows both ways.

●  Examples:
●  $ iptables -D INPUT --dport 80 -j
DROP

●  $ iptables -D OUTPUT 3

●  The first command deletes a rule from the INPUT chain
that specifies packets destined for port 80 to be
DROPped. The second command simply deletes rule
number 3 from the OUTPUT chain.

●  -P or --policy: This command sets a default target, i.e.
policy, for a chain. All packets that don't match any rule
in the chain will then be forced to use the policy of the
chain.

●  Example:
●  $ iptables -P INPUT DROP

●  This command specifies the default target of the INPUT
chain to be DROP. That means all the packets not
matching any rule in the INPUT chain will be dropped.

Command
●  # -N or --new-chain: This creates a new chain with the

name specified in the command.
●  Example:
●  $ iptables -N allowed-chain

Command
●  # -F or --flush:

–  This command deletes all rules inside a chain if a chain name
is specified or all rules in all chains if no chain name is
specified. Used for quick cleanup.

●  Examples:
●  $ iptables -F FORWARD

●  $ iptables -F

Command
●  # -L or --list: Lists all rules in the specified chain.
●  Example:
●  $ iptables -L allowed-chain

●  $ iptables -L

Match
●  The optional match section of the iptables command

specifies the characteristics that a packet should have to
match the rule, such as source and destination address,
protocol, etc. T

●  he matches are divided in two major categories:
–  generic matches and
–  protocol-specific matches.

Match
●  -p or --protocol: This generic protocol match is used to

check for certain protocols.
–  Examples of protocols are TCP, UDP, ICMP, comma-

delimited list of any combination of these three protocols and
ALL (for all protocols).

–  ALL is the default match. This option can be inverted by
using the ! sign.

●  Examples:
●  $ iptables -A INPUT -p TCP, UDP

●  $ iptables -A INPUT -p ! ICMP

–  Both commands perform the same task -- they specify that all
TCP and UDP packets will match this rule. By specifying !
ICMP, we mean to allow all other protocols (TCP and UDP,
in this case) except ICMP.

Match
●  -s or --source: This source match is used to match

packets based on their source IP address.
–  This match also allows IP address range matching and it can

be inverted using the ! sign.
–  The default source match matches all IP addresses.
–  $ iptables -A OUTPUT -s 192.168.1.1

–  $ iptables -A OUTPUT -s 192.168.0.0/24

–  $ iptables -A OUTPUT -s ! 203.16.1.89

–  The second command specifies that this rule matches all
packets coming from IP addresses ranging 192.168.0.0 to
192.168.0.24.

–  The third command specifies that this rule will match any
packets not from source address 203.16.1.89.

Match
●  # -d or --destination:

–  This destination match is used to match packets based on
their destination IP address.

–  This match also allows IP address range matching and it can
be inverted using the ! sign.

●  $ iptables -A INPUT -d 192.168.1.1

●  $ iptables -A INPUT -d 192.168.0.0/24

●  $ iptables -A OUTPUT -d ! 203.16.1.89

Targets
●  We already know that targets are the actions specified

by rules to be performed on packets that match those
rules.

●  There are many target options available along with
allowances for user-defined targets.

●  The following are often-used targets, their examples and
explanations:
–  Accept
–  Reject
–  Drop

Target
●  # ACCEPT:

–  When a packet is perfectly matched with a rule that has an
ACCEPT target, it is accepted (allowed to go wherever it is
destined to) and it will stop traversing the chain (though that
packet may traverse through another chain in another table
and may be dropped there).

–  This target is specified as -j ACCEPT.
●  # DROP:

–  A packet that matches a rule perfectly that has a DROP target
will be blocked and no further processing will be done on it.

–  This target is specified as -j DROP.

Target
●  # REJECT:

–  This target works the same way as the DROP target, except
that it is better than DROP.

–  Unlike DROP, REJECT doesn't leave dead sockets around on
the server and client.

–  Also, REJECT sends back an error message to the sender of
the packet.

–  This target is specified as -j REJECT.
–  $ iptables -A FORWARD -p TCP --dport 22 -
j REJECT

Target
●  # RETURN:

–  The RETURN target set in a rule makes the packet matching
that rule stop traversing through the chain containing the rule.

–  If the chain is a main chain like INPUT, the packet will be
handled using the default policy of that chain.

–  It is specified as -jump RETURN. Example:
–  $ iptables -A FORWARD -d 203.16.1.89 -
jump RETURN

Stateful firewalls
●  The biggest advantage of netfilter/iptables is that it can

configure stateful firewalls
–  A stateful firewall is capable of assigning and remembering

the state of connections made for sending or receiving
packets.

–  Firewall gets this information from the connection tracking
state of the packets.

–  This information about states is used by a firewall when it is
making new packet filtering decisions to increase its
efficiency and speed.

–  There are 4 valid states, namely ESTABLISHED, INVALID,
NEW and RELATED.

States
●  The state ESTABLISHED indicates that the packet is

part of an already established connection that has been
used to both send and receive packets and is fully valid.

●  INVALID state indicates that the packet is not
associated with any known stream or connection and it
may contain faulty data or headers.

●  The state NEW means that the packet has or will start a
new connection or that it is associated with a connection
that has not been used to both send and receive packets.

●  Finally, RELATED means that the packet is starting a
new connection and it is associated with an already
established connection

●  Rate-limited connection and logging capability.
●  Now you can limit both connection attempts, as in SYN-

flooding Denial of Service (DOS) attacks, and also
prevent your logs being flooded, as happened in the
Jolt2 fragment-driven DOS attack against Checkpoint's
Firewall-1.

TCP Extensions
●  --tcp-flags

–  Followed by an optional `!', then two strings of flags, allows
you to filter on specific TCP flags.

–  The first string of flags is the mask: a list of flags you want to
examine. The second string of flags tells which one(s) should
be set. For example,

–  # iptables -A INPUT --protocol tcp --tcp-
flags ALL SYN,ACK -j DENY!

–  This indicates that all flags should be examined (`ALL' is
synonymous with `SYN,ACK,FIN,RST,URG,PSH'), but only
SYN and ACK should be set.

–  There is also an argument `NONE' meaning no flags.

TCP Extensions
●  --syn

–  Optionally preceded by a `!', this is shorthand for `--tcp-flags
SYN,RST,ACK SYN'.

●  --source-port
–  Followed by an optional `!', then either a single TCP port, or

a range of ports.
–  Ports can be port names, as listed in /etc/services, or numeric.
–  Ranges are either two port names separated by a `-', or (to

specify greater than or equal to a given port) a port with a `-'
appended, or (to specify less than or equal to a given port), a
port preceded by a `-'.

iptables -I INPUT -s XXX.XXX.XXX.XXX -j DROP!

Deny a specific host:

Allow loopback access. This rule must come before the rules denying port access!!
iptables -A INPUT -i lo -p all -j ACCEPT
#This rule is essential if you want your own computer to be able to access itself
#through the loopback interface
iptables -A OUTPUT -o lo -p all -j ACCEPT

iptables -A INPUT -p tcp -s 0/0 -d 0/0 --dport 2049 -j DROP - Block NFS
iptables -A INPUT -p udp -s 0/0 -d 0/0 --dport 2049 -j DROP - Block NFS
iptables -A INPUT -p tcp -s 0/0 -d 0/0 --dport 6000:6009 -j DROP - Block X-Windows
iptables -A INPUT -p tcp -s 0/0 -d 0/0 --dport 7100 -j DROP -Block X-Windows font server
iptables -A INPUT -p tcp -s 0/0 -d 0/0 --dport 515 -j DROP - Block printer port
iptables -A INPUT -p udp -s 0/0 -d 0/0 --dport 515 -j DROP - Block printer port
iptables -A INPUT -p tcp -s 0/0 -d 0/0 --dport 111 -j DROP - Block Sun rpc/NFS
iptables -A INPUT -p udp -s 0/0 -d 0/0 --dport 111 -j DROP - Block Sun rpc/NFS

iptables -F
iptables -A INPUT -i lo -p all -j ACCEPT
#Allow self access by loopback interface
iptables -A OUTPUT -o lo -p all -j ACCEPT

iptables -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT
Accept established connections
iptables -A INPUT -p tcp --tcp-option ! 2 -j REJECT --reject-with tcp-reset
iptables -A INPUT -p tcp -i eth0 --dport 21 -j ACCEPT - Open ftp port
iptables -A INPUT -p udp -i eth0 --dport 21 -j ACCEPT
iptables -A INPUT -p tcp -i eth0 --dport 22 -j ACCEPT - Open secure shell port
iptables -A INPUT -p udp -i eth0 --dport 22 -j ACCEPT
iptables -A INPUT -p tcp -i eth0 --dport 80 -j ACCEPT - Open HTTP port
iptables -A INPUT -p udp -i eth0 --dport 80 -j ACCEPT
iptables -A INPUT -p tcp --syn -s 192.168.10.0/24 --dport 139 -j ACCEPT
#Accept local network Samba connection
iptables -A INPUT -p tcp --syn -s trancas --destination-port 139 -j ACCEPT
iptables -P INPUT DROP

IP Headers

ICMP Header

UDP Header

TCP Header

TCP Filter Matches

TCP Filter Matches

UDP MATCHES

ICMP Matches

StandAlone Firewall
Remove any existing rules from all chains
iptables --flush
iptables -t nat --flush
iptables -t mangle --flush

Unlimited traffic on the loopback interface
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

Set the default policy to drop
iptables --policy INPUT DROP
iptables --policy OUTPUT DROP
iptables --policy FORWARD DROP

All of the bits are cleared
iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

SYN and FIN are both set
iptables -A INPUT -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

SYN and RST are both set
iptables -A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

FIN and RST are both set
iptables -A INPUT -p tcp --tcp-flags FIN,RST FIN,RST -j DROP

FIN is the only bit set, without the expected accompanying ACK
iptables -A INPUT -p tcp --tcp-flags ACK,FIN FIN -j DROP

PSH is the only bit set, without the expected accompanying ACK
iptables -A INPUT -p tcp --tcp-flags ACK,PSH PSH -j DROP

URG is the only bit set, without the expected accompanying ACK
iptables -A INPUT -p tcp --tcp-flags ACK,URG URG -j DROP

Using Connection State to By-pass Rule Checking

if ["$CONNECTION_TRACKING" = "1"]; then
 iptables -A INPUT -m state --state ESTABLISHED,RELATED -j
ACCEPT
 iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j
ACCEPT

Stateful Packet Filtering

Source Address Spoofing and Other Bad Addresses

Refuse spoofed packets pretending to be from
the external interface's IP address
iptables -A INPUT -i $INTERNET -s $IPADDR -j DROP

Refuse packets claiming to be from a Class A private network
iptables -A INPUT -i $INTERNET -s $CLASS_A -j DROP

Refuse packets claiming to be from a Class B private network
iptables -A INPUT -i $INTERNET -s $CLASS_B -j DROP

Refuse packets claiming to be from a Class C private network
iptables -A INPUT -i $INTERNET -s $CLASS_C -j DROP

Refuse packets claiming to be from the loopback interface
iptables -A INPUT -i $INTERNET -s $LOOPBACK -j DROP

NAMESERVER="isp.name.server.1" # address of a remote name server
POP_SERVER="isp.pop.server" # address of a remote pop server

NEWS_SERVER="isp.news.server" # address of a remote news server
TIME_SERVER="some.timne.server" # address of a remote time server
DHCP_SERVER="isp.dhcp.server" # address of your ISP dhcp server

LOOPBACK="127.0.0.0/8" # reserved loopback address range
CLASS_A="10.0.0.0/8" # class A private networks
CLASS_B="172.16.0.0/12" # class B private networks
CLASS_C="192.168.0.0/16" # class C private networks
CLASS_D_MULTICAST="224.0.0.0/4" # class D multicast addresses
CLASS_E_RESERVED_NET="240.0.0.0/5" # class E reserved addresses
BROADCAST_SRC="0.0.0.0" # broadcast source address
BROADCAST_DEST="255.255.255.255" # broadcast destination address

CONNECTION_TRACKING="1"
ACCEPT_AUTH="0"
SSH_SERVER="0"
FTP_SERVER="0"
WEB_SERVER="0"
SSL_SERVER="0"
DHCP_CLIENT="1“
INTERNET="eth0" # Internet-connected interface
LOOPBACK_INTERFACE="lo“ # however your system names it
IPADDR=”132.170.148.222" # your IP address
SUBNET_BASE="132.170.148.0"
ISP network segment base address
SUBNET_BROADCAST="132.170.148.255"
network segment broadcast address
MY_ISP="144.144.144.144"
ISP server & NOC address range

